
N-soliton solution for the derivative nonlinear Schrödinger equation with nonvanishing

boundary conditions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 3263

(http://iopscience.iop.org/0305-4470/39/13/006)

Download details:

IP Address: 171.66.16.101

The article was downloaded on 03/06/2010 at 04:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 3263–3274 doi:10.1088/0305-4470/39/13/006

N-soliton solution for the derivative nonlinear
Schrödinger equation with nonvanishing boundary
conditions

Xiang-Jun Chen, Jie Yang and Wa Kun Lam

Department of Physics, Jinan University, Guangzhou 510632, People’s Republic of China

E-mail: xiangjun-chen@21cn.com

Received 16 November 2005, in final form 8 January 2006
Published 15 March 2006
Online at stacks.iop.org/JPhysA/39/3263

Abstract
For the case when all discrete spectral parameters are purely imaginary, an
explicit N-soliton solution for the derivative nonlinear Schrödinger equation
with nonvanishing boundary conditions, consisting of arbitrary number of pure
bright and/or dark solitons, is derived. Shifts of soliton positions due to
collisions between solitons are analytically obtained, which are irrespective of
the bright or dark characters of the participating solitons. Typical collisions
between solitons are graphically shown.

PACS numbers: 05.45.Yv, 52.35.Bj, 42.81.Dp

1. Introduction

The derivative nonlinear Schrödinger equation (DNLSE) is a physically significant integrable
model. It is a model describing nonlinear Alfvén waves in space plasma (see, e.g., [1–8]).
It is equivalent to the modified nonlinear Schrödinger equation (MNLSE) under a gauge-
like transform, which is one of the several integrable models describing sub-picosecond
pulses in single-mode optical fibres (see, e.g., [9–13]). It was suggested that weak nonlinear
electromagnetic waves in ferromagnetic [14], antiferromagnetic [15] or dielectric [16] systems
under external magnetic fields can also be described by the DNLSE.

Solutions of the DNLSE under both the vanishing boundary conditions (VBC) and the
nonvanishing boundary conditions (NVBC) are physically interesting topics. For problems
of nonlinear Alfvén waves, weak nonlinear electromagnetic waves in magnetic and dielectric
media, waves propagating strictly parallel to the ambient magnetic fields are modelled by
the DNLSE with VBC while those oblique waves are modelled by the DNLSE with NVBC.
For problems in optical fibres, pulses under bright background waves should be modelled by
NVBC.
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For the DNLSE with VBC, one-soliton solution was found by the inverse scattering
transform (IST) [17], and N-soliton formulae were also derived by various approaches (see,
e.g., [18, 19]). In this paper, the DNLSE specifically refers to the DNLSE considered in [17].
Other types of DNLSE have also been considered in the literature which are equivalent to this
specific DNLSE under a gauge transformation [20–23].

For the DNLSE with NVBC, it has been shown that, in general, for a complex discrete
spectral parameter, the one-soliton solution is a breather which degenerates to a pure bright
soliton or a pure dark soliton when the discrete spectral parameter becomes purely imaginary
[4, 24–26]. In known (1+1)-dimensional one-component integrable systems, the DNLSE with
NVBC is a rare instance simultaneously admitting bright solitons, dark solitons, as well as
their bound states (breathers). An explicit N-soliton solution describing interactions between
these solitons is thus in special demand. However, like other NVBC problems, a double-
valued function of the spectral parameter inevitably appears in the IST for the DNLSE with
NVBC. An early IST performed on Riemann sheets [24] only gave an explicit expression
for modulus of the one-soliton solution and asymptotic behaviours of the modulus of an
implicit pure two-soliton solution [25]. Although the phase of the one-soliton solution was
found later, yielding a very complicated solution [4, 5], it seems to be a tedious task to get
an explicit multi-soliton solution based on the IST performed on Riemann sheets [24, 25].
Recently, by using the Bäcklund transformation, Steudel [27] got a N-soliton formula in terms
of Vandermonde-like determinants, which is well suited for generating computer pictures but
still unable to explicitly demonstrate collisions between solitons.

It has been suggested that constructing Riemann sheets for such NVBC problems can be
avoided if one performs the IST on the plane of an appropriate affine parameter [28]. The
technique was recently applied to the DNLSE with NVBC, yielding not only a much simpler
one-soliton solution than those in the literature but also a simple IST for further research
[26]. Immediately following [26], an infinite number of conservation laws were derived by a
simple standard procedure [29] and the evolution of a rectangular initial pulse in the system
was considered, which was shown to be highly nontrivial and significantly different from all
known results [30].

However, the first Lax equation for the DNLSE, unlike those in usual integrable systems,
is not an eigenequation of a linear operator, resulting in a potential-related phase η+ in the Jost
solutions. Only modulus of the soliton solution can be obtained directly from the IST [26].
One has to get η+ from an integral relating η+ with the modulus of the soliton solution (see
(21)). For the N-soliton case, to find η+ by directly integrating (21) is obviously impractical.
We need to find another way to get η+.

In this paper, we derive an explicit pure N-soliton solution for the DNLSE with NVBC,
corresponding to purely imaginary discrete parameters. In section 2, we modify the IST
derived in [26] to the case of purely imaginary discrete parameters. In section 3, we find a
raw explicit N-soliton solution, leaving η+ undetermined, by a technique similar to that in [31]
which is very convenient in discussing asymptotic behaviours. In section 4, for the cases of
N = 1 and N = 2, we find η+ by directly integrating (21), yielding exact one-soliton and two-
soliton solutions which show a common relation between η+ and D, the denominator of the raw
solution. The shift of soliton position due to collision is also obtained, which is irrespective
of the bright or dark characters of the solitons. Collisions between solitons are graphically
demonstrated. In section 5, we show that if the relation between η+ and D can be generalized
to the case of arbitrary N, the assumed solution demonstrates asymptotic behaviours similar to
known integrable systems (see, e.g., [32]). It consists of N well-separated exact one-solitons
at times long before (t → −∞) and long after (t → +∞) collisions. The total shift in
position of any soliton due to multi-collisions is a simple summation of the shift due to each
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collision. These facts demonstrate that the assumed N-soliton solution appears to be an exact
one.

2. Inverse scattering transform for the case of purely imaginary discrete
spectral parameters

We write the DNLSE as

iut + uxx + i(|u|2u)x = 0, (1)

where the subscript denotes the partial derivative. The first Lax equation is

∂xF = LF, (2)

with

L = −iλ2σ3 + λU, (3)

U =
(

0 u

−ū 0

)
. (4)

Here σi (i = 1, 2, 3) are Pauli matrices, the bar stands for the complex conjugate and λ is the
time-independent spectral parameter. One can find that (2), containing both λ and λ2, is not a
simple eigenequation of a linear operator.

As there is no phase shift across the DNLS solitons with NVBC [4, 26], the NVBC can
be simply written as

u → ρ, as x → ±∞, (5)

where ρ is a positive constant. The asymptotic solutions of (2) are

E±(x, k) = (I − iρk−1σ1) e−iλζxσ3 , as x → ±∞, (6)

where

λ = 1
2 (k − ρ2k−1), ζ = 1

2 (k + ρ2k−1), (7)

and k is the affine parameter. We define Jost solutions,

�(x, k) → E+(x, k), as x → ∞, (8)

�(x, k) → E−(x, k), as x → −∞, (9)

where

�(x, k) = (ψ̃(x, k), ψ(x, k)), (10)

�(x, k) = (φ(x, k), φ̃(x, k)), (11)

and the scattering coefficients by

φ(x, k) = a(k)ψ̃(x, k) + b(k)ψ(x, k), (12)

φ̃(x, k) = ã(k)ψ(x, k) − b̃(k)ψ̃(x, k). (13)

ψ(x, k), φ(x, k) and a(k) are analytic in the first and the third quadrants of the complex k
plane, while ψ̃(x, k), φ̃(x, k) and ã(k) are analytic in the second and the fourth quadrants.

As shown in [26], on the plane of the affine parameter k, if kn1 = kn is a simple zero of
a(k) in the first quadrant, then kn2 = −kn, kn3 = ρ2k̄−1

n and kn4 = −ρ2k̄−1
n are also simple

zeros. At these zeros,
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φ(x, knj ) = bnjψ(x, knj ), (14)

bn2 = −bn, bn3 = b̄n, bn4 = −b̄n. (15)

For the case when all discrete parameters λn (n = 1, 2, . . . , N) are purely imaginary, all zeros
of a(k) locate on the circle of radius ρ centred at the origin,

kn = ρ exp(iβn), 0 < βn < π/2, n = 1, 2, . . . , N. (16)

That is, kn3 = kn1, kn4 = kn2. Actually there are only two zeros for each n. Contributions of
kn3 and kn4 must be dropped from relevant equations obtained in [26]. For this case we also
have bn3 = bn1 and bn4 = bn2. Then, bn = b̄n, that is, bn is real.

Therefore, for reflectionless potentials, dropping contributions of kn3 and kn4 in
corresponding equations of [26], we get

a(k) = exp

(
−i2

∑
n

βn

)
N∏

n=1

k2 − k2
n

k2 − k̄2
n

, (17)

the inverse scattering equation,

ψ̃(x, k) eiλζx =
(

e−iη+

−iρk−1 eiη+

)
+ 2

N∑
n=1

(
kn 0
0 k

)
cnψ(x, kn)

k2 − k2
n

eiλnζnx, (18)

and the equation connecting soliton solution and the discrete Jost solutions,

u(x) = ρ e−i2η+ − 2ρ e−iη+
N∑

n=1

cn

kn

ψ1(x, kn) eiλnζnx . (19)

Here,

cn = bn

ȧ(kn)
, λn = iρ sin βn, ζn = ρ cos βn, (20)

and

η+(x) = 1

2

∫ ∞

x

(ρ2 − |u|2) dx. (21)

a(k) is independent of t while [26]

bn(t) = bn(0) ei2λnζn(2λ2
n−ρ2)t = bn(0) eνnvnt , (22)

where

νn = ρ2 sin(2βn), vn = ρ2(1 + 2 sin2 βn).

As bn(t) is real and

ȧ(kn) = − i e−iβn

ρ sin(2βn)

∏
m�=n

sin(βn − βm)

sin(βn + βm)
, (23)

we can set

cn(t) = iχnρ sin(2βn) eiβn eνnxn eνnvnt , (24)

where xn is a real constant and χn = ±1. With a symmetric relation found in [26],

ψ̃(x, ρ2k−1) = iρ−1kσ3ψ(x, k), (25)

at k = kn, we have

ψ̃(x, k̄n) = iρ−1knσ3ψ(x, kn). (26)

Therefore, at k = k̄m (m = 1, 2, . . . , N), the first component of (18) is

i eiβmψ1(x, km) = e−iη+
eiλmζmx + 2

N∑
n=1

kncnψ1(x, kn)

k̄2
m − k2

n

ei(λmζm+λnζn)x . (27)

In principle, one can find ψ1(x, km) by solving linear equations (27), then get the N-soliton
solution with (19) and (21).
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3. A raw explicit N-soliton solution without determining η+

Let

fn = √−icnψ1(x, kn), gn = e−iβn
√−icn eiλnζnx (28)

Bnm = gn(2ρ ei2βn)gm

k2
n − k̄2

m

= −ign

ei(βn+βm)

ρ sin(βn + βm)
gm. (29)

(27) and (19) can be rewritten in matrix forms,

f = −i e−iη+
g − Bf , (30)

u = ρ e−i2η+ − i2 e−iη+
gT f . (31)

Here Bnm = Bnm,fn = fn. With (A.1), simple algebra yields a formal N-soliton solution,

u = ρ e−i2η+ A

D
, (32)

where

η+ = ρ2

2

∫ ∞

x

|D|2 − |A|2
|D|2 dx, (33)

D = det(I + B), A = det(I + B′), (34)

B′ = B − 2ρ−1ggT , (35)

B ′
nm = Bnm − 2ρ−1gngm = e−i2(βn+βm)Bnm. (36)

Elements of g,B and B′ can be rewritten as

gn = √
χnρ

1
2

√
sin(2βn) e−i βn

2 e− θn
2 , (37)

Bnm = −i
√

χnχm

√
sin(2βn) sin(2βm)

sin(βn + βm)
ei 1

2 (βn+βm) e− 1
2 (θn+θm), (38)

B ′
nm = −i

√
χnχm

√
sin(2βn) sin(2βm)

sin(βn + βm)
e−i 3

2 (βn+βm) e− 1
2 (θn+θm), (39)

in which

θn = νn(x − xn − vnt). (40)

Actually, an N-soliton solution expressed in determinants is not convenient in discussing its
asymptotic behaviour. Following mathematical techniques in [31], we can get a really explicit
N-soliton solution by expanding D and A into series. Using (A.2), we have

det(I + B) = 1 +
N∑

r=1

∑
1�n1<n2<···<nr�N

B(n1, n2, . . . , nr) (41)

det(I + B′) = 1 +
N∑

r=1

∑
1�n1<n2<···<nr�N

B ′(n1, n2, . . . , nr). (42)
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Here B(n1, n2, . . . , nr) and B ′(n1, n2, . . . , nr) are rth-order principal minors of B and B′,
respectively. Further, with (A.3), we get

B(n1, n2, . . . , nr) = (2ρ)r
∏
n

ei2βnf 2
n

(
k2
n − k̄2

n

)−1 ∏
n<m

∣∣∣∣k2
n − k2

m

k2
n − k̄2

m

∣∣∣∣
2

= (−i)r ei
∑

n βn e− ∑
n θn

∏
n

χn

∏
n<m

sin2(βn − βm)

sin2(βn + βm)
, (43)

B ′(n1, n2, . . . , nr) = (2ρ)r
∏
n

e−i2βnf 2
n

(
k2
n − k̄2

n

)−1 ∏
n<m

∣∣∣∣k2
n − k2

m

k2
n − k̄2

m

∣∣∣∣
2

= (−i)r e−i3
∑

n βn e− ∑
n θn

∏
n

χn

∏
n<m

sin2(βn − βm)

sin2(βn + βm)
, (44)

where n,m ∈ {n1, n2, . . . , nr}. So far we get a raw explicit N-soliton solution without
explicitly determining η+.

4. Exact one-soliton and two-soliton solutions

For the case of N = 1, we get

D = D1 = 1 + B(1) = 1 − iχ1 eiβ1 e−θ1 , (45)

A = A1 = 1 + B ′(1) = 1 − iχ1 e−i3β1 e−θ1 . (46)

Here θ1 = ν1(x − x1 − v1t). Directly integrating (21) yields

η+ = η+
1 = i ln

D1

D̄1
, (47)

and the exact one-soliton solution

u1 = ρ
A1D1

D̄2
1

= u1(θ1), (48)

which is identical to that obtained in the literature. It is a bright soliton for χ1 = −1 or a
dark soliton for χ1 = 1. There is only one parameter, β1, characterizing the soliton which is
usually called the one-parameter soliton [5].

For the case of N = 2, we get

D = D2 = 1 + B(1) + B(2) + B(1, 2)

= 1 − iχ1 eiβ1 e−θ1 − iχ2 eiβ2 e−θ2

− χ1χ2
sin2(β1 − β2)

sin2(β1 + β2)
ei(β1+β2) e−θ1−θ2 , (49)

A = A2 = 1 + B ′(1) + B ′(2) + B ′(1, 2)

= 1 − iχ1 e−i3β1 e−θ1 − iχ2 e−i3β2 e−θ2

− χ1χ2
sin2(β1 − β2)

sin2(β1 + β2)
e−i3(β1+β2) e−θ1−θ2 . (50)

Here θn = νn(x − xn − vnt), n = 1, 2. One can verify that

Re(D2)
d[Im(D2)]

dx
− Im(D2)

d[Re(D2)]

dx
= ρ2

4
(|D2|2 − |A2|2). (51)
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Figure 1. Collision between two bright solitons, ρ = 1, β1 = π/12, β2 = π/24. Variables in the
figure are dimensionless.

With this relation, we get

η+ = η+
2 = i ln

D2

D̄2
, (52)

and the exact two-soliton solution,

u2 = ρ
A2D2

D̄2
2

. (53)

Assume β2 > β1, that is, v2 > v1, at times long before collision (t → −∞), in the vicinity of
θ1 ≈ 0, θ2 → ∞, u2 ≈ u1(θ1), while in the vicinity of θ2 ≈ 0, θ1 → −∞, u2 ≈ u1(θ2 + �),
that is,

u2 ≈ u1(θ1) + u1(θ2 + �), (54)

in which

� = 2 ln

∣∣∣∣ sin(β1 + β2)

sin(β1 − β2)

∣∣∣∣ > 0. (55)

The solution consists of two well-separated solitons, moving to the positive direction of the
x-axis, with the soliton of β1 moving on the front.

At times long after collision (t → ∞), in the vicinity of θ1 ≈ 0, θ2 → −∞, u2 ≈
u1(θ1 + �), while in the vicinity of θ2 ≈ 0, θ1 → ∞, u2 ≈ u1(θ2), that is,

u2 ≈ u1(θ1 + �) + u1(θ2). (56)

The solution consists of two well-separated solitons, moving to the positive direction of the
x-axis, with the soliton of β2 moving ahead.

These asymptotic behaviours imply that the soliton of β2 overtakes the soliton of β1,
collides with the latter and emerges ahead of it. Owing to the collision, the fast soliton gets
a forward shift �x2 = �/ν2, while the slow soliton gets a backward shift �x1 = −�/ν1,
similar to solitons of other known integrable systems (see, e.g., [32]), regardless of whether
they are bright or dark solitons.

Collisions between two solitons of typical parameters are shown in figures 1–4, where x1

and x2 are chosen as x1 = �/(2ν1) and x2 = �/(2ν2) so that the two solitons completely
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Figure 2. Collision between two dark solitons, ρ = 1, β1 = π/15, β2 = π/6. Variables in the
figure are dimensionless.
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Figure 3. A bright soliton of β2 = 2π/15 chases a dark soliton of β1 = 7π/60, ρ = 1. Variables
in the figure are dimensionless.

overlap at t = 0. For collisions between two bright solitons (figure 1) and two dark solitons
(figure 2), two solitons overlap with two equal peaks at t = 0, and then interchange their
roles without passing through each other. When a faster bright soliton chases a dark soliton
(figure 3), the bright soliton is squeezed to a sharper peak while passing through the dark
soliton. When a faster dark soliton chases a slower bright soliton (figure 4), the dark soliton
simply passes through the bright soliton with little change in shape. Behaviours of solitons
shown in figures 1–4 are in agreement with those in [25, 27] numerically obtained from an
implicit two-soliton solution.

(47) and (52) prompt that

η+(x) = i ln
D

D̄
, (57)
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Figure 4. A dark soliton of β2 = π/6 chases a bright soliton of β1 = π/12, ρ = 1. Variables in
the figure are dimensionless.

valid for one-soliton and two-soliton solutions, is possibly a general relation for arbitrary N,
that is,

u = ρ
AD

D̄2
(58)

is possibly the exact N-soliton solution. In the next section, an analysis of its asymptotic
behaviour at large |t | will show it appears to be true.

5. Asymptotic behaviour of the N-soliton solution

Assume (58) is valid for arbitrary N, let β1 < β2 < · · · < βn, i.e., v1 < v2 < · · · < vn, as
t → −∞, in the vicinity of θn ≈ 0, we have

θj →
{

+∞, j > n,

−∞ j < n,
(59)

D ≈ B(1, 2, . . . , n − 1) + B(1, 2, . . . , n − 1, n), (60)

A ≈ B ′(1, 2, . . . , n − 1) + B ′(1, 2, . . . , n − 1, n). (61)

With

B(1, 2, . . . , n − 1, n) = −iχn eiβn−θn

n−1∏
j=1

sin2(βj − βn)

sin2(βj + βn)
B(1, 2, . . . , n − 1), (62)

and

B ′(1, 2, . . . , n − 1, n) = −iχn e−i3βn−θn

n−1∏
j=1

sin2(βj − βn)

sin2(βj + βn)
B ′(1, 2, . . . , n − 1), (63)

in the vicinity of θn ≈ 0, we get

u ≈ u1(θn + �−
n ), (64)

in which

�−
n = 2

n−1∑
j=1

ln

∣∣∣∣ sin(βj + βn)

sin(βj − βn)

∣∣∣∣ . (65)
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That is, the solution consists of N well-separated exact one-solitons,

u ≈
N∑

n=1

u1(θn + �−
n ), (66)

each characterized by one parameter βn (n = 1, 2, . . . , N), moving to the positive direction
of the x-axis, queueing up in a series of ascending βn.

As t → ∞, in the vicinity of θn ≈ 0, we have

θj →
{−∞, j > n,

+∞, j < n,
(67)

D ≈ B(n + 1, n + 2, . . . , N) + B(n, n + 1, . . . , N), (68)

A ≈ B ′(n + 1, n + 2, . . . , N) + B ′(n, n + 1, . . . , N). (69)

With

B(n, n + 1, . . . , N) = −iχn eiβn−θn

N∏
j=n+1

sin2(βj − βn)

sin2(βj + βn)
B(n + 1, n + 2, . . . , N), (70)

and

B ′(n, n + 1, . . . , N) = −iχn e−i3βn e−θn

N∏
j=n+1

sin2(βj − βn)

sin2(βj + βn)
B ′(n + 1, n + 2, . . . , N), (71)

we also get, in the vicinity of θn,

u ≈ u1
(
θn + �+

n

)
, (72)

in which

�+
n = 2

N∑
j=n+1

ln

∣∣∣∣ sin(βj + βn)

sin(βj − βn)

∣∣∣∣ . (73)

The solution also consists of N well-separated exact one-solitons,

u ≈
N∑

n=1

u1
(
θn + �+

n

)
, (74)

queueing up in a series of descending βn. In the mean time the soliton of βn overtakes the
solitons of β1 to βn and is overtaken by the solitons of βn+1 to βN . The total shift of its position
is

�xn = 1

νn

(
�−

n − �+
n

)
. (75)

That is, due to collisions, the soliton of βn got a total forward shift �−
n /νn from exceeding

those slower solitons of β1 to βn−1 and got a total backward shift �+
n

/
νn from being exceeded

by those faster solitons of βn+1 to βN . Noting that �−
n and �+

n are simply summations of
shifts due to each collision between two solitons exactly obtained in the preceding section, we
can conclude that the assumed N-soliton solution (58), with (34), (43) and (44), holds at least
when no simultaneous collisions of more than two solitons occur. It appears to be an explicit
N-soliton solution for the DNLSE with NVBC.
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6. Summary and discussion

In this paper, an explicit pure N-soliton solution for the DNLSE with NVBC is derived for
the case when all of the discrete spectral parameters are purely imaginary. The solution is
explicitly written in a series of exponential functions. As an example of the solution, an
explicit two-soliton solution is derived; typical collisions between two bright solitons, two
dark solitons, as well as one bright soliton and one dark soliton, are graphically shown. Shifts
of soliton positions due to collisions between solitons are analytically obtained. It is interesting
to note that these shifts only depend on parameters of the participating solitons, irrespective of
their bright or dark characters. In [25, 27], pure multi-soliton solutions were also considered,
but no explicit closed form solution consisting of more than one soliton was obtained. When
ρ → 0, this pure N-soliton solution vanishes, that is, it has no counterpart in the regime of
VBC. A general explicit N-soliton solution for complex discrete spectral parameters which
can demonstrate collisions between breathers, as well as collisions between pure bright/dark
solitons and breathers is still an open question. The approaches developed in this paper are
promising to solve the problem. As it has been shown that, as ρ → 0, the one-soliton solution
for a complex discrete spectral parameter with NVBC approaches that with VBC [4, 26], we
can expect that the general N-soliton solution with NVBC will also approach that with VBC.
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Appendix. Some useful formulae of linear algebra

If b and g are N × 1 matrices, A is a regular N × N matrix, then

gT A−1b = det(A + bgT )

det(A)
− 1. (A.1)

For a squared matrix B

det(I + B) = 1 +
N∑

r=1

∑
1�n1<n2<···<nr�N

B(n1, n2, . . . , nr), (A.2)

where B(n1, n2, . . . , nr) is a rth-order principal minor of B.
For a squared matrix C with elements Cjk+ = fjgk(xj + yk)

−1,

det(C) =
∏
j

fjgj

∏
j<j ′

(xj − xj ′)
∏
k<k′

(yk − yk′)
∏
j,k

(xj + yk)
−1. (A.3)
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